ROCKFORD BALL SCREW

LINEAR GUIDE RAIL SYSTEMS

ROCKFORD BALL SCREW

LINEAR GUIDE RAIL SYSTEMS

TABLE OF CONTENTS

- 2 About RBS
- 4 Characteristics and Advantages
- 5 A&AL Tapped/Through Hole with Flange
- 7 R&RL Blind Tapped Hole without Flange
- 9 W&V Low Profile Blind Tapped Hole without Flange
- 11 Joined Rails
- 12 Linear Guide Selection Process and Index
- 13 Life Estimation
- 17 Load Calculation
- 19 Accuracy
- 21 Preload & Rigidity
- 22 Allowable Mounting Error
- 23 Friction
- 24 Lubrication
- 25 Contamination Protection
- 26 Accessories Installation
- 27 Additional Linear Motion Solutions from RBS

Additional Online Resources

Selecting A Linear Guideway	Linear Guide Rail Installation Procedures	Applicatior Data Sheet

This catalog contains basic information relating to Rockford Ball Screw, LLC and related products. The catalog including all information, charts, formulas, factors, accuracy standards, tolerances and application examples contained herein, should only be considered a reference for the customer's selection of appropriate products and may not apply for all applications. This should not replace a proper application analysis conducted by an experienced, knowledgeable design engineer. Product selection should be based on the specific application requirements and conditions, which may vary greatly depending on many factors. No specific product application should be based solely on the information contained in this catalog.

OUR CUSTOMERS COME FRST

Ian McBain founded the Rockford Ball Screw Company in 1973 with three goals in mind:

- **1** Provide the customer with a quality product
- **2** Provide the customer with a competitive price
- **3** Provide the product on time

Today, the Rockford Ball Screw Company continues as a family owned and operated business, and lan's three goals endure as the backbone of our growth and commitment to our customers needs.

Rockford Ball Screw products are built to the highest performance design standards. Extensive engineering expertise and a state-of-the-art manufacturing facility ensure top performance and reliability in our products. Our linear guide rail systems, ball screw and ACME screw product lines feature over 200 standard models and one of the largest inventories in the industry.

Rockford Ball Screw is an ISO 9001 Certified company committed to to continuous improvement and dedication to total customer satisfaction. Call us today and see for yourself what "service" really means!

LINEAR GUIDE RAIL SYSTEMS

2

CUSTOM SPECIALIZED SERVICES

High-Quality Products

Rockford Ball Screw offers linear motion solutions, built to the highest performance design standards. Our extensive engineering expertise and state-of-the-art manufacturing facility ensure top performance and reliability in our products.

We offer one of the largest inventories of linear guide rail systems, ball screw and ACME screw product lines in the industry and our offerings are continually growing and evolving. Our extensive product lines include catalogued, non-catalogued, standard, and non-standard offerings. If you don't see what you're looking for, all you have to do is ask.

Value-Add Customization Services

Have you been told, "It can't be done"?

Call Rockford Ball Screw.

When customers bring us their ideas, we don't say, "No," or push them toward our standard offerings.

Rather, we act as a trusted partner and seek to cooperatively find solutions through implementation of services such as:

- Feasibility assesments
- Formal engineering analyses

We take variable concepts all the way through implementation, including custom design, development, production, assembly work, and installation.

Additional Resources

- Visit Rockford Ball Screw's website for more information www.rockfordballscrew.com
- A full product catalogue is available as a downloadable PDF on our website
- Or call (800) 475-9532 to request a hard copy of the product catalog
- Our website offers interactive CAD configurators
- Contact our technical staff at (800) 475-9532 to discuss your specific application

Customers Come First

Rockford Ball Screw customers receive the highest level of quality, service, and engineering expertise. Our specially trained staff and state-of-the-art manufacturing facility and equipment work in concert to effectively fulfill customer needs - whether they require standard or custom offerings.

We offer one of the highest services-to-client ratio in the industry. Our customers have direct access to RBS personnel - including sales, development, engineering, etc. - as needed to support their requirements.

We believe in and are committed to partnering with our customers at the front end of projects to put a program in place for success across the entire lifecycle - from prototyping through production.

Rockford Ball Screw supports every major CAD software program - incompatibility is never an issue!

ROCKFORD BALL SCREW

rockfordballscrew.com 800-475-9532

CHARACTERISTICS & ADVANTAGES

Four Way Equal Loading

RPG blocks have four raceways, each having a 45° contact angle. This allows equal loading in all directions; pressing, lifting & transverse.

High Rigidity & Self Alignment

The Double Face (DF) configuration and circular arc raceways of the block offer high rigidity while maintaining self-alignment.

Universal Rail

Both standard (RPGH) and low-height (RPGS) blocks use a common rail. Both sides of the rail are ground as datum references.

Enhanced Features Are Standard

End seals are a standard feature on each block; most sizes also have a long-life lubrication reservoir, a metal seal retention frame and side seals. Since interchangeability specification tolerances are tightly held, when using multiple parallel rails simply order multiple assemblies. Mounting Bolt hole protective caps are included with every rail.

Industry Standard Mounting/Envelope Dimensions

Designed in accordance with international standards.

LINEAR GUIDE RAIL SYSTEMS

A & AL

TAPPED/THROUGH HOLE WITH FLANGE

A & AL Product Dimension Data

	A	ssembly	(mm / ir	1)	RPGH Block								RPGH Rail					
Model	Н	W	W2	E	L	B	C		L1	0:1	T1	N	W1	H1	F	dxDxh		
No.	mm	mm	mm	mm	mm	mm	mm	MQxA	mm		mm	mm	mm	mm	mm	mm		
	in	in	in	in	in	in	in		in	noie	in	in	in	in	in	in		
	24	47	16	2.5	68	38	30	MENO	40	<i>a</i> 2	4.3	5	15	14	60	4.5x7.5×5.3		
притопа	0.945	1.850	0.630	0.098	2.677	1.496	1.181	IVIJ×0	1.575	03	0.169	0.197	0.591	0.551	2.362	.177x.295x.209		
DDCOULA	30	63	21.5	2.9	79.8	53	40		48.8		7	15.6	20	18	60	6×9.5×8.5		
nr uzuna	1.181	2.480	0.846	0.114	3.142	2.087	1.575	Meyo	1.921	M6v1	0.276	0.614	0.787	0.709	2.362	.236x.374x.335		
BBC20HVI	30	63	21.5	5	92.4	53	40	WI0×3	63.4	WOAT	7	15.6	20	18	60	6×9.5×8.5		
III UZUIIAL	1.181	2.480	0.846	0.197	3.638	2.087	1.575		2.496		0.276	0.614	0.787	0.709	2.362	.236x.374x.335		
RDC25HA	36	70	23.5	4.9	90	57	45		57		7.8	15.6	23	22	60	7x11x9		
nr uzjna	1.417	2.756	0.925	0.193	3.543	2.244	1.772	M8v12	2.244	M6v1	0.307	0.614	0.906	0.866	2.362	.275x.433x.354		
RDC25HAI	36	70	23.5	7	110.1	57	45	WOXIZ	79.1	WOAT	7.8	15.6	23	22	60	7x11x9		
III UZJIIAL	1.417	2.756	0.925	0.276	4.335	2.244	1.772		3.114		0.307	0.614	0.906	0.866	2.362	.275x.433x.354		
BDC30HV	42	90	31	9	109	72	52		72		7	15.6	28	26	80	9x14x12		
III USOIIA	1.654	3.543	1.220	0.354	4.291	2.835	2.047	M10~12	2.835	M6~1	0.276	0.614	1.102	1.024	3.150	.354x.551x.472		
RPG30HAI	42	90	31	9	131.3	72	52	WITU ATZ	94.3	WOAT	7	15.6	28	26	80	9x14x12		
III USUIAL	1.654	3.543	1.220	0.354	5.169	2.835	2.047		3.713		0.276	0.614	1.102	1.024	3.150	.354x.551x.472		
RPG35HA	48	100	33	7.6	111	82	62		80		8	15.6	34	29	80	9x14x12		
III USSIIA	1.890	3.937	1.299	0.299	4.370	3.228	2.441	M10~13	3.150	M6~1	0.315	0.614	1.339	1.142	3.150	.354x.551x.472		
RPG35HAI	48	100	33	9.5	134.8	82	62	WITUATU	105.8	WIO ~ I	8	15.6	34	29	80	9x14x12		
III USSIIAL	1.890	3.937	1.299	0.374	5.307	3.228	2.441		4.165		0.315	0.614	1.339	1.142	3.150	.354x.551x.472		
RPG45HA	60	120	37.5	12.05	140.2	100	80		105		8.5	16	45	38	105	14×20×17		
	2.362	4.724	1.476	0.474	5.520	3.937	3.150	M12~15	4.134	MO. 1	0.335	0.630	1.772	1.496	4.134	.551x.787x.669		
RPG45HAL	60	120	37.5	14	163	100	80	M12×15 129.8	0 129.8 N	⁵ 129.8 ^{M8×1}	WIO AT	8.5	16	45	38	105	14×20×17	
III U45IIAL	2.362	4.724	1.476	0.551	6.417	3.937	3.150		5.110		0.335	0.630	1.772	1.496	4.134	.551x.787x.669		

Rail Part Numbering

Block Part Numbering

*Consult factory

A & AL Product Performance Data

	Ref. Data		Basic Loa	ad Rating	St	atic Mome	nt	We	ight	Should	er Height	Radius
Model	Lmax [†]	G	(C ₅₀) Dynamic	(C ₀) Static	Mr	Mn	Mv	Block	Rail	Rail (H2)	Block (H3)	Rail/Block (r)
No.	mm	mm	N	N	Nm	Nm	Nm	Kg	Kg/m	mm	mm	mm
	in	in	lbf	lbf	ft·lbf	ft·lbf	ft·lbf	lb	lb/ft	in	in	in
DDC1EUA	4000	20	8336	13239	99	67	67	0.21	1.40	2	5	0.8
RPUIDRA	157.480	0.787	1874	2976	73	49	49	0.46	0.94	0.079	0.197	0.031
DDC20HA	4000	20	13729	23536	235	143	143	0.40	2.60	2.4	6	0.8
nruzuna	157.480	0.787	3086	5291	174	106	106	0.88	1.75	0.094	0.236	0.031
DDC20HAI	4000	20	16181	29420	294	233	233	0.52	2.60	2.4	6	0.8
NFUZURAL	157.480	0.787	3638	6614	217	172	172	1.15	1.75	0.094	0.236	0.031
DDCOEUA	4000	20	19123	31381	361	224	224	0.57	3.60	4.4	7	1.2
nruzona	157.480	0.787	4299	7055	266	165	165	1.26	2.42	0.173	0.276	0.047
DDC25UAL	4000	20	25497	45111	519	446	446	0.72	3.60	4.4	7	1.2
hruzonal	157.480	0.787	5732	10141	383	329	329	1.59	2.42	0.173	0.276	0.047
DDC20UA	4000	20	27949	47072	659	424	424	1.10	5.20	6.4	8	1.2
NF USUNA	157.480	0.787	6283	10582	486	312	312	2.43	3.49	0.252	0.315	0.047
DDC20UAI	4000	20	35304	62763	879	739	739	1.40	5.20	6.4	8	1.2
NF USUNAL	157.480	0.787	7937	14110	648	545	545	3.09	3.49	0.252	0.315	0.047
DDC25UA	4000	20	37756	60801	1034	608	608	1.60	7.20	7.1	9	1.2
nrusona	157.480	0.787	8488	13669	762	448	448	3.53	4.84	0.280	0.354	0.047
DDC2EUAI	4000	20	47072	81395	1384	1077	1077	2.00	7.20	7.1	9	1.2
NF USDIAL	157.480	0.787	10582	18298	1021	794	794	4.41	4.84	0.280	0.354	0.047
	4000	22.5	63743	102970	2317	1351	1351	2.70	12.30	11.5	11	1.6
NF U43NA	157.480	0.886	14330	23149	1709	997	997	5.95	8.27	0.453	0.433	0.063
	4000	22.5	75511	127486	2868	2068	2068	3.60	12.30	11.5	11	1.6
AP040HAL	157.480	0.886	16976	28660	2116	1525	1525	7.94	8.27	0.453	0.433	0.063

Rail Accessories

Bolt Torque

		Torque	in Steel	Torque in .	Aluminum
Rail Size	Bolt Size	Nm	ft-lbf	Nm	ft-lbf
RPG15	M4x16	4	3	2	1.5
RPG20	M5x20	8.8	6.5	4.4	3.25
RPG25	M6x25	13.7	10	6.8	5
RPG30	M8x30	30	22	15	11
RPG35	M8x30	30	22	15	11
RPG45	M12x40	120	88.5	58	42.75

tLmax Tolerance: @4,000 mm (+0.0/-20mm)

LINEAR GUIDE RAIL SYSTEMS

BLIND TAPPED HOLE WITHOUT FLANGE

R & RL

R & RL Product Dimension Data

	A	ssembly	(mm / in)	RPGH Block								RPGH Rail					
Model	Н	W	W2	E	L	В	C		L1	0:1	T1	N	W1	H1	F	dxDxh		
NO.	mm	mm	mm	mm	mm	mm	mm	MQxA	mm		mm	mm	mm	mm	mm	mm		
	in	in	in	in	in	in	in		in	noie	in	in	in	in	in	in		
	28	34	9.5	2.5	68	26	26	MALIC	40	an	8.3	5	15	14	60	4.5x7.5X5.3		
RPGISHK	1.102	1.339	0.374	0.098	2.677	1.024	1.024	INI4×0	1.575	03	0.327	0.197	0.591	0.551	2.362	.177x.295x.209		
DDCOOUD	30	44	12	2.9	79.8	32	36		48.8		7	15.6	20	18	60	6×9.5×8.5		
RPGZURK	1.181	1.732	0.472	0.114	3.142	1.260	1.417	ME. 0	1.921	Meyd	0.276	0.614	0.787	0.709	2.362	.236x.374x.335		
DDCOOLDI	30	44	12	5	92.4	32	50	0×CIVI	63.4	IVIOX I	7	15.6	20	18	60	6×9.5×8.5		
RPGZURKL	1.181	1.732	0.472	0.197	3.638	1.260	1.969		2.496		0.276	0.614	0.787	0.709	2.362	.236x.374x.335		
DDCOEUD	40	48	12.5	4.9	90	35	35		57		11.8	15.6	23	22	60	7x11x9		
nruzonn	1.575	1.890	0.492	0.193	3.543	1.378	1.378	MGv10	2.244	MGv1	0.465	0.614	0.906	0.866	2.362	.275x.433x.354		
DDC2EUDI	40	48	12.5	7	110.1	35	50	IVIOXIU	79.1	WOXI	11.8	15.6	23	22	60	7x11x9		
hruzonne	1.575	1.890	0.492	0.276	4.335	1.378	1.969		3.114		0.465	0.614	0.906	0.866	2.362	.275x.433x.354		
DDC20UD	45	60	16	9	109	40	40		72		10	15.6	28	26	80	9x14x12		
nrusunn	1.772	2.362	0.630	0.354	4.291	1.575	1.575	M9, 12	2.835	M6v1	0.394	0.614	1.102	1.024	3.150	.354x.551x.472		
	45	60	16	9	131.3	40	60	WOX13	94.3	WUXI	10	15.6	28	26	80	9x14x12		
nrusonne	1.772	2.362	0.630	0.354	5.169	1.575	2.362		3.713		0.394	0.614	1.102	1.024	3.150	.354x.551x.472		
	55	70	18	7.6	111	50	50		80		15	15.6	34	29	80	9×14×12		
nrusonn	2.165	2.756	0.709	0.299	4.370	1.969	1.969	M0, 12	3.150	Mext	0.591	0.614	1.339	1.142	3.150	.354x.551x.472		
	55	70	18	9.5	134.8	50	72	WOX13	105.8	IVIO×I	15	15.6	34	29	80	9×14×12		
nrussini	2.165	2.756	0.709	0.374	5.307	1.969	2.835		4.165		0.591	0.614	1.339	1.142	3.150	.354x.551x.472		
	70	86	20.5	12.05	140.2	60	60		105		18.5	16	45	38	105	14×20×17		
nru43nn	2.756	3.386	0.807	0.474	5.520	2.362	2.362	M10, 16	4.134 Mp 1 (0.728	0.630	1.772	1.496	4.134	.551x.787x.669			
	70	86	20.5	14	163	60	80	WI IUX 10	129.8	WOXI	18.5	16	45	38	105	14×20×17		
NP040MKL	2.756	3.386	0.807	0.551	6.417	2.362	3.150		5.110	0.728	0.630	1.772	1.496	4.134	.551x.787x.669			

Rail Part Numbering

Block Part Numbering

rockfordballscrew.com 800-475-9532

7

R & RL Product Performance Data

Ref. Data		Basic Load Rating		St	atic Mome	nt	Wei	ight	Should	er Height	Radius	
Model	Lmax [†]	G	(C ₅₀) Dynamic	(C ₀) Static	Mr	Mn	Mv	Block	Rail	Rail (H2)	Block (H3)	Rail/Block (r)
No.	mm	mm	N	N	Nm	Nm	Nm	Kg	Kg/m	mm	mm	mm
	in	in	lbf	lbf	ft·lbf	ft·lbf	ft·lbf	lb	lb/ft	in	in	in
	4000	20	8336	13239	99	67	67	0.19	1.40	2	5	0.8
nruisin	157.480	0.787	1874	2976	73	49	49	0.42	0.94	0.079	0.197	0.031
DDCOOUD	4000	20	13729	23536	235	143	143	0.31	2.60	2.4	6	0.8
KPu20HK	157.480	0.787	3086	5291	174	106	106	0.68	1.75	0.094	0.236	0.031
DDC20UDI	4000	20	16181	29420	294	233	233	0.47	2.60	2.4	6	0.8
hruzunni	157.480	0.787	3638	6614	217	172	172	1.04	1.75	0.094	0.236	0.031
BBCOEUD	4000	20	19123	31381	361	224	224	0.45	3.60	4.4	7	1.2
KPu20HK	157.480	0.787	4299	7055	266	165	165	0.99	2.42	0.173	0.276	0.047
DDCOEUDI	4000	20	25497	45111	519	446	446	0.56	3.60	4.4	7	1.2
RPGZORRL	157.480	0.787	5732	10141	383	329	329	1.23	2.42	0.173	0.276	0.047
DDC20UD	4000	20	27949	47072	659	424	424	0.91	5.20	6.4	8	1.2
RPGJURK	157.480	0.787	6283	10582	486	312	312	2.01	3.49	0.252	0.315	0.047
DDC20UDI	4000	20	35304	62763	879	739	739	1.20	5.20	6.4	8	1.2
RPGJURKL	157.480	0.787	7937	14110	648	545	545	2.65	3.49	0.252	0.315	0.047
DDC25UD	4000	20	37756	60801	1034	608	608	1.50	7.20	7.1	9	1.2
nrusonn	157.480	0.787	8488	13669	762	448	448	3.31	4.84	0.280	0.354	0.047
DDC2EUDI	4000	20	47072	81395	1384	1077	1077	1.90	7.20	7.1	9	1.2
RPG30HRL	157.480	0.787	10582	18298	1021	794	794	4.19	4.84	0.280	0.354	0.047
	4000	22.5	63743	102970	2317	1351	1351	2.30	12.30	11.5	11	1.6
кра4опк	157.480	0.886	14330	23149	1709	997	997	5.07	8.27	0.453	0.433	0.063
DDC/EUDI	4000	22.5	75511	127486	2868	2068	2068	2.80	12.30	11.5	11	1.6
RPG45HKL	157.480	0.886	16976	28660	2116	1525	1525	6.17	8.27	0.453	0.433	0.063

Rail Accessories

Bolt Torque

		Torque	in Steel	Torque in	Aluminum
Rail Size	Bolt Size	Nm	ft-lbf	Nm	ft-lbf
RPG15	M4x16	4	3	2	1.5
RPG20	M5x20	8.8	6.5	4.4	3.25
RPG25	M6x25	13.7	10	6.8	5
RPG30	M8x30	30	22	15	11
RPG35	M8x30	30	22	15	11
RPG45	M12x40	120	88.5	58	42.75

tLmax Tolerance: @4,000 mm (+0.0/-20mm)

LOW PROFILE BLIND TAPPED HOLE WITHOUT FLANGE

W & V Product Dimension Data

W & V

	A	ssembly	(mm / in)	RPGH Block									RPGH Rail					
Model	Н	W	W2	E	L	В	C		L1	0:1	T1	N	W1	H1	F	dxDxh			
NO.	mm	mm	mm	mm	mm	mm	mm	MQxA	mm	Ull	mm	mm	mm	mm	mm	mm			
	in	in	in	in	in	in	in		in	noie	in	in	in	in	in	in			
DDC15CW	24	34	9.5	2.5	68	26	26		40		4.3	5	15	14	60	4.5x7.5×5.3			
nFulbow	0.945	1.339	0.374	0.098	2.677	1.024	1.024	MAVE 6	1.575	<i>(</i> 2)	0.169	0.197	0.591	0.551	2.362	.177x.295x.209			
DDC15SV	24	34	9.5	4.6	47.6	26		WI4×J.0	21.6	03	4.3	5	15	14	60	4.5x7.5×5.3			
NF0155V	0.945	1.339	0.374	0.181	1.874	1.024			0.850		0.169	0.197	0.591	0.551	2.362	.177x.295x.209			
PPC20CW	28	42	11	2.9	79.8	32	32		48.8		5	15.6	20	18	60	6×9.5×8.5			
nFu203W	1.102	1.654	0.433	0.114	3.142	1.260	1.260	MENGA	1.921	MGv1	0.197	0.614	0.787	0.709	2.362	.236x.374x.335			
PPC20SV	28	42	11	5	57	32		WJX0.4	28	WOXI	5	15.6	20	18	60	6×9.5×8.5			
NF 0203V	1.102	1.654	0.433	0.197	2.244	1.260			1.102		0.197	0.614	0.787	0.709	2.362	.236x.374x.335			
DDC2ECW	33	48	12.5	4.9	90	35	35		57		4.8	15.6	23	22	60	7x11x9			
nFu255W	1.299	1.890	0.492	0.193	3.543	1.378	1.378	MGv9	2.244	MGv1	0.189	0.614	0.906	0.866	2.362	.275x.433x.354			
PROSERV	33	48	12.5	7	62.5	35		IVIOXO	31.5	WOXI	4.8	15.6	23	22	60	7x11x9			
nruz55V	1.299	1.890	0.492	0.276	2.461	1.378			1.240		0.189	0.614	0.906	0.866	2.362	.275x.433x.354			
PDC20CW	42	60	16	9	109	40	40		72		7	15.6	28	26	80	9x14x12			
nr 0303W	1.654	2.362	0.630	0.354	4.291	1.575	1.575	M9, 11 5	2.835	M6v1	0.276	0.614	1.102	1.024	3.150	.354x.551x.472			
PPC20SV	42	60	16	9	75.6	40		WIOX11.J	38.6	WOXI	7	15.6	28	26	80	9x14x12			
nrususv	1.654	2.362	0.630	0.354	2.976	1.575			1.520		0.276	0.614	1.102	1.024	3.150	.354x.551x.472			
PDC25CW	48	70	18	7.6	111	50	50		80		8	15.6	34	29	80	9x14x12			
nrussaw	1.890	2.756	0.709	0.299	4.370	1.969	1.969	M0.11.0	3.150	MGv1	0.315	0.614	1.339	1.142	3.150	.354x.551x.472			
PDC25SV	48	70	18	9.5	74.7	50		WOX11.2	45.7	WIOXI	8	15.6	34	29	80	9x14x12			
nrussav	1.890	2.756	0.709	0.374	2.941	1.969			1.799		0.315	0.614	1.339	1.142	3.150	.354x.551x.472			
DDC 45 CW	60	86	20.5	12.05	140.2	60	60	M10-10	105	MO. 1	8.5	16	45	38	105	14×20×17			
nru433W	2.362	3.386	0.807	0.474	5.520	2.362	2.362	WHU×13	4.134	WOXI	0.335	0.630	1.772	1.496	4.134	.551x.787x.669			

Rail Part Numbering

*Consult factory

ROCKFORD BALL SCREW

rockfordballscrew.com 800-475-9532

W & V Product Performance Data

Ref. Data		Basic Load Rating		St	atic Mome	nt	Wei	ight	Should	er Height	Radius	
Model	Lmax [†]	G	(C ₅₀) Dynamic	(C ₀) Static	Mr	Mn	Mv	Block	Rail	Rail (H2)	Block (H3)	Rail/Block (r)
NO.	mm	mm	N	N	Nm	Nm	Nm	Kg	Kg/m	mm	mm	mm
	in	in	lbf	lbf	ft·lbf	ft·lbf	ft·lbf	lb	lb/ft	in	in	in
DDC15CW	4000	20	8336	13239	99	67	67	0.17	1.40	2	5	0.8
nruijow	157.480	0.787	1874	2976	73	49	49	0.37	0.94	0.079	0.197	0.031
DDC15CV	4000	20	5099	6669	50	18	18	0.10	1.40	2.4	6	0.8
nru155V	157.480	0.787	1146	1499	37	13	13	0.22	0.94	0.094	0.236	0.031
DDCOOCW	4000	20	13729	23536	235	143	143	0.26	2.60	2.4	6	0.8
nruzu3W	157.480	0.787	3086	5291	174	106	106	0.57	1.75	0.094	0.236	0.031
PRODOCI	4000	20	9316	13729	69	48	48	0.17	2.60	4.4	7	1.2
nru203V	157.480	0.787	2094	3086	51	35	35	0.37	1.75	0.173	0.276	0.047
DDC25CW	4000	20	19123	31381	361	224	224	0.38	3.60	4.4	7	1.2
nruzjow	157.480	0.787	4299	7055	266	165	165	0.84	2.42	0.173	0.276	0.047
DDCOECV	4000	20	12258	17162	172	68	68	0.21	3.60	6.4	8	1.2
RP0205V	157.480	0.787	2756	3858	127	50	50	0.46	2.42	0.252	0.315	0.047
PPC20CW	4000	20	27949	47072	659	424	424	0.81	5.20	6.4	8	1.2
RPG305W	157.480	0.787	6283	10582	486	312	312	1.79	3.49	0.252	0.315	0.047
BBCOOCH	4000	20	17162	23536	330	114	114	0.48	5.20	7.1	9	1.2
RP0305V	157.480	0.787	3858	5291	243	84	84	1.06	3.49	0.280	0.354	0.047
DDC25CW	4000	20	37756	60801	1034	608	608	1.20	7.20	7.1	9	1.2
nrusssw	157.480	0.787	8488	13669	762	448	448	2.65	4.84	0.280	0.354	0.047
DDC2ECV	4000	22.5	24517	35794	609	205	205	0.80	7.20	11.5	11	1.6
RPG355V	157.480	0.886	5512	8047	449	151	151	1.76	4.84	0.453	0.433	0.063
DDC 45 CW	4000	22.5	63743	102970	2317	1351	1351	2.10	12.30	11.5	11	1.6
KP6455W	157.480	0.886	14330	23149	1709	997	997	4.63	8.27	0.453	0.433	0.063

Rail Accessories

Accessory Scraper: 2 Metal Scrapers End Seal: 2 End Seals (New Bolts & Lube Fitting provided if necessary) Scraper/SL: 2 Metal Scrapers & 2 End Seals (New Bolts & Lube Fitting provided if necessary) Capplugs: Rail Bolt Hole Caps

SCRAPER

Bolt Torque

		Torque	in Steel	Torque in	Aluminum	
Rail Size	Bolt Size	Nm	ft-lbf	Nm	ft-lbf	
RPG15	M4x16	4	3	2	1.5	
RPG20	M5x20	8.8	6.5	4.4	3.25	
RPG25	M6x25	13.7	10	6.8	5	
RPG30	M8x30	30	22	15	11	
RPG35	M8x30	30	22	15	11	
RPG45	M12x40	120	88.5	58	42.75	

tLmax Tolerance: @4,000 mm (+0.0/-20mm)

Joined rails can be utilized to solve a myriad of different design challenges. For example, joined rails may be used to extend the length of a guideway system beyond that of a single rail or provide an access portal for guide block removal and installation.

RBS maintains an extensive inventory of linear guide rails to serve our customers with best in industry lead times, including joined rail applications. Our rails are 4000 mm long for all sizes, when longer lengths are needed, we provide precision machining services to ensure each joined rail connection aligns perfectly for smooth block travel across each joint. Give our technical staff a call at (800) 475-9532 to discuss your specific joined rail application needs.

Note: Due to the special manufacturing and dimensional considerations associated with joined rail systems, Rockford Ball Screw requires consulting our factory prior to ordering.

In joined rail applications, it is preferred to have a rail locating or datum surface to assist in proper alignment across the joined sections and provide additional stability. (*Ref. Linear Guide Rail Installation Procedures. PDF on website.*)

For assembly purposes, the corresponding mating end of each rail will be identified with an alpha numeric numbering system as shown below in *Fig. 11*. This illustration also shows several design dimensions that will be required prior to supplying a joined rail system.

Fig. 11 Standard Joined Rail Configuration

Select Series & Size of Rail

Rail Size (mm): 15, 20 Block Style: RPGH RPGH BPGS	, 25, 30, 35, 45 A & AL (Standard Height, Flanged mounting, Standard Length & Long Length)
Joined Rails	11
Life Estimation	on
Establishing Load: Calculating Loading:	Basic Dynamic and Static Load Ratings C_{50} , and C_0 13Mean and Equivalent Loads P_m and P_e 14Design Safety Factor f_s 15Contact Factor f_e 16Load Factor f_m 16Temperature & Hardness Rating Factors.16Calculate Individual Loading on Blocks P_n (Horizontal, Perpindicular, Vertical and Angled)17-18
Select Accura	асу
Running Parallelism: Accuracy Grades: Nor Accuracy Recommenda	Height & Width19mal (N) High (H) Precision (P)19ations by Type of Machine20
Select Preloa	d and Calculate Rigidity & Friction
Preload Grades: Light Rigidity Friction Calculation .	Clearance (F) No Clearance (0) Light Preload (1) Medium Preload (2)
Mounting Err	or Tolerances
Permissible Parallelism Permissible Tolerance	of Two Rails
Lubrication C	onsiderations
Lubrication Procedure, Types of Lubricant	Installation & Intervals
Select Access	sories
End, Bottom and Side S Metal Scrapers Hole Cap Plugs	Seals 26 Bellows 26 26 26 Accessory Codes 26

Additional Online Resources

Selecting A Linear Guideway

Application Data Sheet

Basic Dynamic Load Rating C₅₀

The Basic Dynamic Load Rating C_{50} is used to calculate the Fatigue/Service Life of a linear guide system that is in motion and under load. The Dynamic Load Rating is defined as a load of constant magnitude applied in a downward direction to the center of the guide block which theoretically furnishes 50km of L₁₀ life.

The following formula may be used to convert the Basic Dynamic Load Rating C_{50} to an equivalent Dynamic Load Rating for 100km of Rated Fatigue Life C_{100} :

$$C_{100} = \left(\frac{C_{50}}{1.26}\right)$$

The Dynamic Load Rating C_{50} can be found in our Product Charts (pages 5-10)

Fatigue Life (Service Life) L₁₀

Fatigue Life (L_{10}) is the total linear distance of travel displaced without incidental high cycle metal fatigue (flaking) by 90% of identical linear motion systems operating independently under the same conditions. This life calculation is also referred to as Service Life or Normal Life.

For linear guide systems utilizing balls as the rolling element, the fatigue service life can be calculated using the following formula:

$$L_{10} = 50 \text{ km} \star \left(\frac{C_{50}}{P_{\text{m}}}\right)^3$$

 L_{10} = Fatigue Life (km) C_{50} = Basic Dynamic Load Rating (N) (50km) P_m = Mean Applied Load to ball slide (N) See Selection Guide Example (Ref. Selecting a Linear Guideway. PDF on website)

Basic Static Load Rating C₀

The Basic Static Load Rating is defined as the maximum allowable Static Load which can be applied in a downward direction to the center of the guide block. The application of loads in the excess of the Basic Static Load Rating will exceed the elastic properties of the material and yield permanent deformation. The resulting sum of the ball and raceway deformations is theoretically equivalent to .0001 times the diameter of the rolling element.

The Basic Static Load Rating C_0 can be found in our Product Charts (pages 5-10)

Basic Static Moment Load Rating Mo

The Basic Static Moment Load Rating defines the magnitude of a moment which applied about one of three axes of freedom will yield the same degree of permanent raceway and bearing ball deformation as referred to in the Basic Static Load Rating C_{a} .

- $M_p =$ Pitching motion of guide block
- $M_v =$ Yawing motion of guide block
- $M_r = Rolling motion of guide block$

Fig. 13 Profile Guide Moment Diagram

13

Equivalent Load P_e

When two or more loads are applied simultaneously from different directions (Normal loads and Transverse loads), a combined equivalent load, P_e should be calculated as shown below. This calculated equivalent load should be used in evaluating systemic L_{10} Service Life and Design Safety Factor (f_e).

 $P_e \text{ (Equivalent Load)} = |P_n| + |P_t|$ $P_n = \text{Normal Load}$ $P_t = \text{Transverse Load}$

Fig. 14A Equivalent Load

Table 14 General Calculation Requirement for Load

 and Moment Evaluation

Mean (Average Loads) P_m

The Mean Load is characterized as a load of constant value that results in a quantity of work equivalent to that of the original application. The Mean Load should be utilized in evaluating the Fatigue/Service Life (L_{10}) of an application given the assumption that instantaneous peak loads do not exceed the Static Load Rating (C_{g}) of the product. The remainder of this section will describe and address several typical Mean Loading conditions.

Mean Load calculations are used when the loading of systems and individual blocks varies as the system moves from point to point in an application. In general terms, the majority of loading profiles fall into one of three categories: **Stepwise Loading**, **Linear Loading** and **Sinusoidal Loading**. Each case presents a unique Mean Load calculation method as depicted in the following diagrams and specified in the associated equations.

Stepwise Loading

The system load increases (or decreases) in predictable plateaus over distances traveled. (Example: way covers collapsing)

When the load varies in steps:

$$P_{m} = \sqrt[3]{\frac{1}{X_{t}}} (P_{1}^{3} * X_{1} + P_{2}^{3} * X_{2} - P_{n}^{3} * X_{n})$$

 $P_m = Mean Load (N)$ $P_1, P_2...P_n = Varying Load (N)$

 $X_t = Total Distance Traveled (mm)$

 X_1 , X_2 ... X_n = Distance Traveled Under Various Loads (mm)

Fig. 14B Stepwise Loading

Linear Loading

The system load increases (or decreases) in direct proportion to the distance traveled. (Example: compressing a spring)

When the load varies linearly:

Fig. 15A Linear Loading

Sinusoidal Loading

The system load increases (or decreases) slowly at the beginning of travel, increases (or decreases) very rapidly in the center portion of travel, and increases (or decreases) at the rate equal to that at the beginning of travel at the end of the stroke. (Example: compressing a column of air)

When the load varies sinusoidally:

Design Safety Factor f_s

Design Safety Factor is used to account for peak acceleration/deceleration loads caused by vibrations, impacts, or inertial forces.

Design Safety Factor (f_s) represents the ratio of either the Basic Static Load Rating (C_{g}) or Basic Static Moment Load Rating (M_{g}) to the actual applied system load or moment.

$$f_s = \left(\frac{f_c * C_0}{P_e}\right) \quad \text{or} \quad f_s = \left(\frac{f_c * M_0}{M}\right)$$

f = Design Safety Factor

f = Contact Factor (See Table 15A on page 15)

 $C_{o} =$ Basic Static Load Rating

 M_{a} = Basic Static Permissible Moments ($M_{r}/M_{p}/M_{y}$)

P = Equivalent Load

M = Applied Moment Load

Operating Conditions	Loading Conditions	Minimum \mathbf{f}_{s}
At Post	Impact Load Is Small, Little Or No Vibration	1.0 - 1.7
ALNESI	Impact, Moment Loads Or Vibration Present	1.7 - 3.0
During	Impact Load Is Small, Little Or No Vibration	1.0 - 2.0
Motion	Impact, Moment Loads Or Vibration Present	2.0 - 5.0

Table 15 Reference Values for Design Safety Factor

15

Contact Factor f_c

When multiple blocks are used on the same rail in close proximity to one another, uniform load distribution is difficult to achieve due to mounting surface errors, moment loading and other factors.

As a general rule, adjacent blocks are in close proximity when the space between adjacent blocks on the same rail is less than or equal to the L_1 dimension of a given block. Refer to the chart and illustration below for applicable close contact factors.

Fig. 16 Block Proximity

Number of blocks used in close contact	Contact Factor f _C
Normal Use (not in close contact)	1
2	0.81
3	0.72
4	0.66
5	0.61
6 or more	0.6

Table 16A Contact Factor (f_c)

Load Factor f_w

When vibrations and/or impacts are present during a reciprocating movement, the instantaneous loads can be difficult to fully quantify. In these instances, a load contact factor f_w should be used.

Vibration/ Impact	Speed (V)	f _w
Faint $0 \le f_w < .25g$	Hyper-slow $V \le 0.25m/sec$	1 - 1.2
$\begin{array}{l} \mbox{Weak} \\ .25 \leq f_{_{\cal W}} < .50g \end{array}$	Slow $.25 < V \le 1m/sec$	1.2 - 1.5
$\begin{array}{l} \textbf{Moderate} \\ .50 \leq f_{_{\mathcal{W}}} < 1.0 g \end{array}$	$\begin{array}{l} \mbox{Medium} \\ 1 < V &\leq 2m/sec \end{array}$	1.5 - 2
$\begin{array}{c} \textbf{Strong} \\ 1.0 \leq f_{_{\!\!\mathcal{W}}}\!\!< 2.0 g \end{array}$	Fast V > 2m/sec	2 - 3.5

Table 16B Load Factor (f.,)

Temperature & Hardness Rating/Factors

RPG linear guides will operate with no loss of efficiency or degredation in load carrying capacity up to 80° C (176° F). Under these conditions, a temperature adjustment factor will not be necessary. If the ambient temperature exceeds 80° C (176° F), please consult factory for further assistance.

Life Calculation

In applications where it is difficult to fully quantify all loads and/or peak acceleration/deceleration loading acting on a linear guide system, the L_{10} life should be calculated using the following formula:

$$L_{10} = \left(\frac{f_c}{f_w} * \frac{C_{50}}{P_m}\right)^3 * 50 \text{ km}$$

 L_{10} = Resultant Life (km) C_{50} = Basic Dynamic Load Rating (N) (50 km)

- $P_m =$ Mean Load (N)
- f = Contact Factor
- $f_{...}^{c}$ = Load Factor

The loads acting on the a linear guide system vary according to the location of the center of gravity, the thrust, the load position, the moment loading due to acceleration and deceleration, the cutting forces and other external forces.

Below are some common guide system arrangements, please contact the factory if your application is not shown.

Horizontal Orientation

$$\begin{split} \mathbf{P}_{n1} &= \frac{1}{4} \mathbf{m}g + \frac{\ell_2}{2\ell_0} \mathbf{m}g + \frac{\ell_3}{2\ell_1} \mathbf{m}g + \frac{\ell_2\ell_3}{\ell_0\ell_1} \mathbf{m}g \\ \mathbf{P}_{n2} &= \frac{1}{4} \mathbf{m}g - \frac{\ell_2}{2\ell_0} \mathbf{m}g + \frac{\ell_3}{2\ell_1} \mathbf{m}g - \frac{\ell_2\ell_3}{\ell_0\ell_1} \mathbf{m}g \\ \mathbf{P}_{n3} &= \frac{1}{4} \mathbf{m}g + \frac{\ell_2}{2\ell_0} \mathbf{m}g - \frac{\ell_3}{2\ell_1} \mathbf{m}g - \frac{\ell_2\ell_3}{\ell_0\ell_1} \mathbf{m}g \\ \mathbf{P}_{n4} &= \frac{1}{4} \mathbf{m}g - \frac{\ell_2}{2\ell_0} \mathbf{m}g - \frac{\ell_3}{2\ell_1} \mathbf{m}g + \frac{\ell_2\ell_3}{\ell_0\ell_1} \mathbf{m}g \end{split}$$

 $P_{n1, 2, 3, 4}$ = Resultant Normal Loads on Blocks m = Mass of Applied Load (kg) g = 9.8 m/sec²

Perpendicular Orientation (Wall Mount)

$$P_{n1} = P_{n2} = P_{n3} = P_{n4} = \frac{\ell_4}{2\ell_1} mg$$
$$P_{t1} = P_{t3} = \frac{1}{4} mg + \frac{\ell_2}{2\ell_0} mg$$
$$P_{t2} = P_{t4} = \frac{1}{4} mg - \frac{\ell_2}{2\ell_0} mg$$

 $\begin{array}{l} P_{n1,\ 2,\ 3,\ 4} = Resultant \ Normal \ Loads \ on \ Blocks \\ P_{t1,\ 2,\ 3,\ 4} = Resultant \ Transverse \ Loads \ on \ Blocks \\ m = Mass \ of \ Applied \ Load \ (kg) \\ g = 9.8 \ m/sec^2 \end{array}$

Vertical Orientation

$$P_{n1} = P_{n2} = P_{n3} = P_{n4} = \frac{\ell_4}{2\ell_0} mg$$
$$P_{t1} = P_{t2} = P_{t3} = P_{t4} = \frac{\ell_3}{2\ell_0} mg$$

 $\begin{array}{l} P_{n1,\;2,\;3,\;4} = Resultant Normal Loads on Blocks \\ P_{t1,\;2,\;3,\;4} = Resultant Transverse Loads on Blocks \\ m = Mass of Applied Load (kg) \\ g = 9.8 \; m/sec^2 \end{array}$

Angled Orientation

$$\begin{split} P_{n1} &= \frac{mg\cos\theta}{4} + \frac{mg\cos\theta\ell_{2}}{2\ell_{0}} + \frac{mg\cos\theta\ell_{3}}{2\ell_{1}} - \frac{mg\sin\theta\ell_{4}}{2\ell_{1}} + \frac{\ell_{2}\ell_{3}}{\ell_{0}\ell_{1}}mg\cos\theta\\ P_{n2} &= \frac{mg\cos\theta}{4} - \frac{mg\cos\theta\ell_{2}}{2\ell_{0}} + \frac{mg\cos\theta\ell_{3}}{2\ell_{1}} - \frac{mg\sin\theta\ell_{4}}{2\ell_{1}} - \frac{\ell_{2}\ell_{3}}{\ell_{0}\ell_{1}}mg\cos\theta\\ P_{n3} &= \frac{mg\cos\theta}{4} + \frac{mg\cos\theta\ell_{2}}{2\ell_{0}} - \frac{mg\cos\theta\ell_{3}}{2\ell_{1}} + \frac{mg\sin\theta\ell_{4}}{2\ell_{1}} - \frac{\ell_{2}\ell_{3}}{\ell_{0}\ell_{1}}mg\cos\theta\\ P_{n4} &= \frac{mg\cos\theta}{4} - \frac{mg\cos\theta\ell_{2}}{2\ell_{0}} - \frac{mg\cos\theta\ell_{3}}{2\ell_{1}} + \frac{mg\sin\theta\ell_{4}}{2\ell_{1}} + \frac{\ell_{2}\ell_{3}}{\ell_{0}\ell_{1}}mg\cos\theta\\ P_{11} &= P_{13} = \frac{mg\sin\theta}{4} + \frac{mg\sin\theta\ell_{2}}{2\ell_{0}} \end{split}$$

 $\begin{array}{l} P_{n1,\ 2,\ 3,\ 4} = Resultant \ Normal \ Loads \ on \ Blocks \\ P_{t1,\ 2,\ 3,\ 4} = Resultant \ Transverse \ Loads \ on \ Blocks \\ m = Mass \ of \ Applied \ Load \ (kg) \\ g = 9.8 \ m/sec^2 \\ \theta = Angle \ of \ Incline \end{array}$

Additional Online Resources

Selecting A Linear Guideway

Linear Guide Rail Installation Procedures

LINEAR GUIDE RAIL SYSTEMS

18

Running Parallelism

Running parallelism is defined as the deviation of parallelism between the reference datum surface of the guide block and the reference surface of the rail when the guide block is moving over the entire length of the rail.

RPG blocks have one qualified datum edge where as the rail edges are universal, meaning both edges of the rail are considered datum edges.

Difference in Height (\triangle H)

By definition, difference in height is the maximum difference in height (H) measured between any pair of blocks on the same rail or set of rails mounted on the same plane.

Difference in Width (\triangle W)

The maximum difference in width (W) between each block mounted on the same rail is known as the difference in width.

Note: The accuracy is measured at the center or central area of the block.

	Accuracy Grade		
	Normal (N)	High (H)	Precision (P)
Tolerance of Height (H)	+/- 0.10	+/- 0.04	+ 0.00 - 0.04
Tolerance of Width (W)	+/- 0.10	+/- 0.04	+ 0.00 - 0.04
Difference of Heights (\bigtriangleup H)	0.03	0.02	0.01
Difference of Widths (\bigtriangleup W)	0.03	0.02	0.01
Running parallelism of block surface C in relation to A	riangle C refer to chart below		
Running parallelism of block surface D in relation to B	riangle D refer to chart below		

Table 19 Accuracy Table (mm)

Fig. 19A Datum Surfaces

rockfordballscrew.com 800-475-9532

	Application	N	н	Р		Application	N	н	Р
	Machining Center			Х	s	Cartesian Center	Х	Х	
	Lathe			Х	obot	Cylindrical Coordinate	Х	Х	
	Milling Machine			Х	~	Gantry Root	Х	Х	
	EDM			Х	itor	Wire Bonder			Х
Tools	Punch Press		Х	Х	x X Nachines	Inserter		Х	Х
	Wood Working	Х	Х	Х		Circuit Board		Х	Х
hine	Drilling/Tapping		Х	Х	Sem	Injection Molding	Х	Х	
Mac	Pallet Changer	Х				Office Equipment	Х	Х	
	Engraving Machine	Х				Transfer Equipment	Х	Х	
	ATC	Х			lers	XY Table		Х	Х
	Wire Cutter			Х	Oth	Medical Equipment	Х	Х	Х
	Small CNC Machine	Х				Paint. Weld Machines	Х	Х	

Table 20 Accuracy Grades For Various Applications

Radial Clearance

Radial Clearance is defined as the vertical play between the block and rail as measured at the center of the block. The radial clearance is measured by lightly lifting up on the block.

Preload

Preload is a precise mechanical load applied to the rolling elements (balls) in order to increase the systemic rigidity and eliminate radial clearance. Four way equal loading of RPG blocks resists normal, transverse, and moment loading. Mounting Accuracy may dictate the allowable Preload (*See Tables 22A and 22B*). The blocks are shipped with the specified preload and no further adjustment is necessary.

Fig. 21A Radial Clearance

	Grade F Ligh	nt Clearance	Grade O No Preload		Grade 1 Light Preload		Grade 2 Medium Preload	
	Radial Clearance	Preload Force	Radial Clearance	Preload Force	Radial Clearance	Preload Force	Radial Clearance	Preload Force
RPG15	+4~+14	0	-4~+4	0	-12~-4	.02 x C ₀	-20~-12	.05 x C ₀
RPG20	+5~+15	0	-5~+5	0	-14~-5	.02 x C ₀	-23~-14	.05 x C ₀
RPG25	+6~+16	0	-6~+6	0	-16~-6	.02 x C ₀	-26~-16	.05 x C ₀
RPG30	+7~+17	0	-7~+7	0	-19~-7	.02 x C ₀	-31~-19	.05 x C ₀
RPG35	+8~+18	0	-8~+8	0	-22~-8	.02 x C ₀	-35~-22	.05 x C ₀
RPG45	+10~+20	0	-10~+10	0	-25~-10	.02 x C ₀	-40~-25	.05 x C ₀

Table 21A Preload & Rigidity Radial Clearance units in μm

Grade	Preload	Application Requirements	Examples of Application
F & 0	Clearance to Preloaded	High translation speeds, low impact loads, good precision, low friction requirements, multiple rail systems	X & Y axes of material handling machines, welders, general industrial machines, etc.
1	Light Preload	Overhanging loads, twisting loads, single rail applications, and greater rigidity than F or 0	Industrial robots, material feeders, semiconductor machinery, EDM machines and Precision XY tables, etc.
2	Medium Preload	Applications requiring high rigidity, exposed to vibrations or impacts, heavy cutting forces for machine tools	Machine Centers, CNC lathes, Medical devices, etc.

Table 21B Effect of Preload & Rigidity

Rigidity

The rigidity of the guide assembly can be increased depending on the magnitude of the preload. (*Fig. 21B*)

Rigidity =
$$\frac{P}{\delta}$$

 $\delta = \text{Displacement} \ (\mu \text{m})$

Fig. 21B Effect of Preload on Rigidity where Pp equals Preload Force

P = Calculated Load (N)

ALLOWABLE MOUNTING ERROR

Permissible Tolerance for Parallelism of Two Rails

RPG Guides have self-aligning characteristics and therefore can accommodate some mounting surface errors while achieving smooth motion. The chart to the right indicates the maximum permissible tolerance specification for parallelism error (P) (based on preload selection).

	Preload Class					
Model	F	0	1	2		
RPG15	35	25	18	—		
RPG20	35	25	20	18		
RPG25	42	30	22	20		
RPG30	55	40	30	27		
RPG35	68	50	35	30		
RPG45	85	60	40	35		

Table 22A Permissible Parallelism Tolerance (P) units in μm

Fig. 22B Coplanarity Drawing

Permissible Tolerance for Coplanarity (two level offset) of Two Rails

The values for permissible coplanarity mismatch (S_1) as shown below apply when the rail to rail distance is 500mm (Dim "a"). The permissible offset values are proportionate to the distance between the rails and therefore vary as the "a" dimension deviates from the 500mm.

	Preload Class					
Model	F	0	1	2		
RPG15	190	130	85	—		
RPG20	190	130	85	50		
RPG25	195	130	85	70		
RPG30	250	170	110	90		
RPG35	290	210	150	120		
RPG45	350	250	170	140		

Table 22B Coplanarity Tolerance (S_4) units in μm

22

FRICTION

The frictional characteristics of rolling element guideway systems are substantially superior to those based on sliding element principles. In order to minimize frictional losses, the RPG product offering, as described in this catalog, has been designed with four rows of rolling elements.

Although frictional losses in a linear guideway system are often minimal, they develop as a result of many variables such as differential ball slip, loading factors, lubrication viscosity, seal friction, and others. In general, the force required to overcome the frictional resistance of a linear guideway system can be calculated as follows:

The stated seal resistance is based per block and assumes using the proper type and amount of lubricant.

Seal Resistance		Unit: N		
Rail Size	Seal Resistance	Rail Size	Seal Resistance	
RPG15	3	RPG30	5	
RPG20	4	RPG35	7	
RPG25	4	RPG45	9	

Table 23B Seal Resistance

23

Selecting the proper lubrication is critical to maximize the performance and the life of RPG guide assemblies. Therefore, the types of lubricant and lubrication methods should be carefully determined based on operating parameters and conditions.

All Rockford Ball Screw RPG blocks need to be lubricated with a NLGI Grade 2 bearing grease KP2K-20 to Din 51825. This is a high-performance lithium complex grease capable of operating at high speeds, heavy loads, and at temperatures beyond the limits of conventional lithium bearing greases.

RLM recommends grease as the preferred lubricant unless speeds are in excess of 60 m/min, in which case oil should be used.

Note: Any selected lubricant must meet or exceed the stated factory bearing grease specifications.

When using oil as the lubricant, it is imperative to choose a product with the correct viscosity to meet the demands of the application (CLP; viscosities of ISO VG 32 to 680 per Din 51519). Oil mist lubrication systems can be utilized with a small positive pressure cavity to help keep the guide blocks clean. These misting systems will require oils with a viscosity that has high atomizing rates. The same factors that influence the choice of a grease should also be considered when choosing an oil; such as loading, speed, temperature, vibrations, humidity, and others.

A Lubrication Reservoir is standard on RPG blocks sizes 15 through 30. The reservoir and block are not filled with grease at the factory and will need to be lubricated prior to operating. The amount of lubrication required is shown in *Tables 24A and 24B*.

Lubrication Procedure

For best lubrication dispersal, the block should be lubricated through the supplied lube port while the block is in motion. This will ensure circulation to all internal bearing surfaces. When a guide system is oriented vertically, the uppermost lubrication port should be utilized to ensure gravity assisted lubrication dispersal. Excessive lubrication will result in lubricant escaping through the block seals.

In the instance of short stroke assemblies ($\leq 2x$ block length (L₁)), the block should be lubricated from both ends to ensure adequate lubrication to the entire ball track.

Lubrication Interval

The Lubrication Interval is often times dependent on operational and environmental criteria such as loading, speed, stroke travel, and ambient conditions. Lubricating blocks with a lubrication reservoir 2-5 times at equal intervals during the calculated life of the guide block should be sufficient. Blocks that do not have a reservoir should be lubricated more frequently.

Environments

Special environments such as vacuums, clean rooms and the food industry will require specialized grease or oils. Please consult the factory for recommendations.

	Block Equipped with Lubrication Reservoir				
Block Size	Initial Fill Grease (cm ³) Re-Grease				
RPG15	1.3	1.1			
RPG20	2.3	2			
RPG25	2.8	2.5			
RPG30	3.5	3			

Table 24A Equipped Reservoir Re-lubrication Required

	Blocks NOT Equipped with Lubrication Reservoir			
Block Size	Initial Fill Grease (cm ³)	Re-Grease		
RPG35	7	4		
RPG45	8.5 5			

 Table 24B
 Non-equipped
 Reservoir
 Re-lubrication
 Required

CONTAMINATION PROTECTION

Contamination due to dust and other foreign particulates can cause premature wear or failure to RPG guides. To protect the RPG guides, effective sealing or contamination protection measures should be carefully selected based on the operating environment.

End Seals

End Seals made from synthetic rubber are designed to have anti-wear properties while providing bidirectional dust protection with little increase in frictional resistance.

Double End Seals

Metal Scrapers

Metal Scrapers are used for keeping larger particulates such as weld splatter, metal chips, and ice from entering the guide block.

Bottom Seals

Bottom Seals are provided on all standard length RPG guide blocks and are designed to seal the underside of the block from contaminates.

Hole Cap Plugs

Hole Cap Plugs are included with all rail shipments. The plastic cap is designed to keep contaminates out of the rail bolt holes which could then migrate into the block.

Bellows

Bellows, or telescopic covers, may be required to keep out the most difficult contaminates such as machining chips and coolants.

25

ACCESSORY INSTALLATION

Installation Instructions

Note: The RPG Block(s) should be installed on the rail before proceeding with the accessory installation. Complete installation on one end of the block before beginning the other end.

- 1 Remove the existing bolts from the end of the block assembly.
- 2 Gently slide the accessories onto the rail and up against the block. Depending on the model, the additional accessories will either be installed flush to the existing end seal or the metal frame of the block. The scraper plate, if applicable, should always be mounted last.
- 3 Insert the proper bolts into the bolt holes of the block and tighten. Note: When additional end seals and/or scrapers are installed on the RPG blocks, the overall length (L dimension) will increase (See *Table 26B* for scraper and seal thickness). If required, a longer lube fitting and bolts will be provided with the accessory kit and should be used in place of the original. If an additional lube fitting and/or bolts are not supplied as part of the kit, the original parts should be used.

Block Series Accessory	Metal Scrap	er Thickness	Seal Th	ickness
RPG15	1 mm	0.039 in.	2.5 mm	0.098 in.
RPG20	1 mm	0.039 in.	2.5 mm	0.098 in.
RPG25	1.5 mm	0.059 in.	2.5 mm	0.098 in.
RPG30	1 mm	0.039 in.	3.3 mm	0.130 in.
RPG35	1 mm	0.039 in.	3.7 mm	0.146 in.
RPG45	1 mm	0.039 in.	3.7 mm	0.146 in.

Table 26B Scraper and Seal Thickness Chart

LINEAR GUIDE RAIL SYSTEMS

BALL SCREWS

For over 50 years Rockford Ball Screw has been manufacturing standard (inch) and metric ball screws, built to the highest performance design standards. Our extensive engineering expertise and state-of-the-art manufacturing facility ensures top performance and reliability in our products.

We offer one of the largest inventories of linear motion product lines in the industry.

If you don't see what you're looking for, just ask, we're here to help!

FREE-WHEELING BALL SCREWS

Our free-wheeling screw (also referred to as planetary or epicyclic ball screws) is different from a standard ball screw in that it utilizes a ball cage (retainer) inside the nut. As the cage contacts a stop in the screw at the end of the stroke, the ball nut will stop linear motion but the screw will continue to rotate (free-wheel). When the screw rotation reverses, linear motion will continue in the opposite direction until the cage contacts the pin at the other end of the stroke.

Limit switches or other types of expensive stops are not necessary. These are used in many applications such as adjustable bed or lift chair actuations, marine trim tab actuators and electrical switching devices. Perfect for applications that do not require complex logic and switches.

Check us out and give us a call to see how we can meet your design needs.

ACME Screws

The RBS line of ACME screw products has been designed and manufactured to provide an economical means to convert rotational to linear motion without internal moving components. Our standard line of ACME screws is produced to General Purpose-2G tolerances from excellent quality materials. The trapezoidal thread is a very effective at preventing back driving which will reduce the need for additional braking or motor holding. These perform well in many different applications including dirty harsh environments. Check out our offerings and contact our team and experience what we can do for you.

28

Custom Solutions

In addition to our standard catalog items, Rockford Ball Screw's experienced team can work with you to create a unique solution for your specific application. With 50 years of making ball screws, we have seen and done a lot for many different industries, including:

- Medical (exam tables, dental chairs, etc.)
- Marine (boat trim tabs, hatch lifts, etc.)
- Recreational Vehicles (jacks, slide outs, etc.)
- Aerospace (jet bridges, terminal gates, etc.)
- Energy Oil & Gas (gate valves, completions, etc.)
- Heavy Lifting (screw jacks, lifts, etc.)
- Heat Treat & Glass (door lifts, burner actuation, etc.)
- Agriculture, Automation, Military, Trailers and more.

Our team of Engineers can rapidly bring custom linear motion solutions to life. We welcome the opportunity to work with your team to develop design concepts and prototypes, performing trial runs and achieving full production release. We can also do reverse engineering of existing linear motion systems to help speed the design cycle, minimize development costs and achieve the robust custom solution your design needs.

Assembly

Rockford Ball Screw's strong and comprehensive product knowledge combined with our engineering expertise is revolutionizing the value-added assembly services we provide our customers.

We utilize specialized assembly equipment and fixturing that can provide ready-to-use linear motion assemblies for rapid insertion into your products, including:

- Actuator sub-assemblies with bushings, bearings, gears, sprockets, and/or couplers
- Bearing mount (bearing supports / end supports) installation on screw journals

We machine the journals on your screws to suit your needs, add threads for lock nuts, keyways, splines, cross drilled holes, extended journals for bearings and gears and many other features. We can also modify the ball nuts we make by adding special mounting threads, Trunnion mounts, flanges and/or adaptors to interface with your design.

- Epoxy sealing of components for moisture and/dust egress prevention
- Ball nut grease injection and screw assembly greasing
- Bellows installation

29

KEEPING INDUSTRY ON THE MOVE

We've provided the solutions to keep industry moving for 50 years and we know how important it is to your productivity and bottom line to keep your ball screws operating efficiently. When you need a ball screw repair, timing and service is of the essence. Our sales and service team stands by with free, comprehensive evaluations, supported by reverse engineering and failure mode analysis. Our repair team offers one of the fastest turnaround times in the industry, reducing machine down time and saving up to 70% of the cost to replace with new product.

We service all brands/manufacturers (including American Ball Screw, Beaver Precision Products, Century, Cincinnati, Nook, NSK, Rockford Ball Screw, THK, Thomson/Saginaw, Tsubaki, Twentieth, Warner Electric)

- Foreign and domestic
- Diameters up to 6 inches
- Lengths up to 40 feet
- Rolled and precision ground screws
- Standard (inch) and metric sizes/dimensions
- Carbon steel & stainless steel
- Wide range of ball bearings (steel, ceramic & plastic)
- Customized backlash and preloads
- Internal and external return
- Repair External Tubes

50 YEARS OF MAINTAINING PRODUCTIVITY.

SERVICES PROVIDED

- Design Optimization
- Reverse Engineering
- Inspection for wear and damage
- Ball Screw Repair -
 - Machined end journals
 - Threaded ends
 - Key Ways in ends
- Failure Mode Analysis
- Technical Drawings
- Refurbish Bearing Mounts
- Replace Bearings in Ball Nuts

PUT OUR EXPERTISE

- Experts in ball screws and linear rails
- Quick turnaround

TO WORK

- Expedited services on request
- Large inventory of raw materials & components
- Extensive range of screw diameters & lengths
- New replacement ball screws if
 more cost-effective

rockfordballscrew.com

940 Southrock Dr. Rockford, IL 61102 800-475-9532

Linear Guide Solutions 815.961.7900 **Ball Screw Solutions** 815.961.7700

RBS-M 01/23